Math facts with simple proofs that are still (somewhat) surprising

Sometimes it happens to me that I become aware of a mathematical fact that surprises me – and the proof for the fact would even fit in a tweet.

When goofing around with graph homomorphisms, I realised that the following is true:

Fact. If f:G\to H is a graph homomorphism, then \chi(G) \leq \chi(H) — no matter whether the graphs involved are finite or infinite.

Proof. Colorings are homomorphisms to complete graphs. If c: H\to K_{\chi(K)} is a homomorphism, then so is c \circ f : G \to K_{\chi(K)}.

The funny thing is: If I had been told just the statement of the fact “out of the blue”, I would have said that you probably need some condition on the homomorphism f:G\to H, like it being surjective etc. So I find it a bit surprising that the statement holds in this generality — even if there is a tweet-length proof for it.

About dominiczypen

I'm interested in general topology, order theory, and graph theory. This link takes you to my preprints on arXiv.
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s